EULAR 2014: Speakers Abstracts
Speaker Presentations. Stem cells and inflammation

SP0054 The Many Faces of Mesenchymal Stem Cell Immunomodulation
F. Djouad¹,²

Author affiliations

Abstract
Mesenchymal stem cells (MSC) initially isolated in bone marrow have been since identified in other tissues including adipose, synovium, peristium, perichondrium, dental pulp and tonsil. These cells are characterized by their phenotype and their capacity to differentiate into chondrocytes, osteoblasts and adipocytes. Moreover, MSC potently modulate immune responses, display healing capacities, prevent fibrosis and improve angiogenesis. Taking into account these unique properties, an interest in MSC research has increased over the last decade bringing them into the clinic as a novel therapeutic tool for a variety of autoimmune diseases. The justification to use MSC for the treatment of autoimmune diseases was initially shown in experimental autoimmune encephalomyelitis (EAE). Then, for the treatment of refractory Crohn's disease the use of autologous bone marrow derived MSC also revealed a significant improvement of the clinical condition of the patients. In patients with systemic lupus erythematosus (SLE) although initial studies using autologous MSC led to unsatisfactory results more recent investigations reported a therapeutic effect of allogeneic MSC. Along with these encouraging results obtained with MSC, their mechanisms of action are still under investigation. Lately, we extensively studied the mechanisms involved in the immunomodulatory properties of MSC both in vitro and in vivo. First, we showed that MSC contribute to the generation of an immunosuppressive environment via the inhibition of proinflammatory T cells and the induction of T cells with a regulatory phenotype. More specifically, we showed that MSC inhibitory effect on the Th17 cell development in favour of the generation of regulatory T cells is mediated...
by a Gilz-dependent Activin A production. In contrast, on mature Th17 cells we described a cell-to-cell contact depend mechanism mediated through the up-regulation of PD-L1 expression by MSC. In vivo, in a murine model of rheumatoid arthritis (RA) we demonstrated the requirement for Gilz in the therapeutic effect of MSC mediated in part through the generation of regulatory Th17. The suppressive function of MSC confers on them the potential to be used for therapeutic applications in autoimmune diseases.

Disclosure of Interest None declared


http://dx.doi.org/10.1136/annrheumdis-2014-eular.6248

Request permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Copyright information: © 2014, Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions

Read the full text or download the PDF:

Buy this article

Subscribe

Log in
Consultant Rheumatologist and General Physician
Stevenage, Hertfordshire | £76,761 - £103,490
This is a substantive appointment for a new post and will start at an agreed date on appointment.
Recruiter: East and North Hertfordshire NHS Trust

Lecturer/Senior Lecturer and Consultant Rheumatologist
Otago (NZ)
We are seeking to appoint a specialist Rheumatologist to take up a full-time joint Academic and Clinical position within the...
Recruiter: University of Otago

Consultant Physician with an interest in Rheumatology
Glasgow, Glasgow City | £78304.00 to £105570.00
The post will be based at Queen Elizabeth University Hospital (QEH) and you will join a team of 8 established consultants and a Specialty Doctor
Recruiter: NHS Greater Glasgow and Clyde

Consultant Rheumatologist
Antrim
Antrim Hospital

Other content recommended for you

A6.11 Gilz-dependent activin a production by MSC inhibits TH17 differentiation
P Luz-Crawford et al., Ann Rheum Dis, 2014

A1.38 Mesenchymal stem cells induce non-classical IL-10-producing regulatory TH17 cells in arthritis: role of gilz
F Djouad et al., Ann Rheum Dis, 2014

Glucocorticoid-induced leucine zipper (GilZ) inhibits B cell activation in systemic lupus erythematosus
Sarah A Jones et al., Ann Rheum Dis, 2015

PPARβ/δ directs the therapeutic potential of mesenchymal stem cells in arthritis
P Luz-Crawford et al., Ann Rheum Dis, 2016

Mesenchymal stem cells are conditionally therapeutic in preclinical models of rheumatoid arthritis.
Anastasia Papadopoulou et al., Ann Rheum Dis, 2012